fit
 ISTITUTO ITALIANO
 DI TECNOLOGIA
 PATTERN ANALYSIS
 AND COMPUTER VISION

Structured representations:

 pushing causality for visual data
Davide Talon

April $13^{\text {th }} 2022$

Agenda

Part 1

Causality 101

From statistical to causal models

The structural causal model

Identifiability probblem

Agenda

Part 1

Causality 101

From statistical to causal models

The structural causal model

Identifiability prőblem

Part 2

High
dimensional data

Linear and non-linear ICA

Disentanglement

The identifiability problem

Cross-pollination: causality and disentanglement

Part 3

Causal signals in Visual data

Causal signal for images

Causal visual datasets

Causal relationship

- Cause-effect: externally intervening the cause may change the effect, but not vice versa

In pizza we trust

- Taste
- Ingredients
- Bakery
- Me - Davide :)

The ladder of causation

COUNTERFACTUAL

I baked it for 5^{\prime} and burnt it out. Had I baked for 3', would I have burnt it?

INTERVENTION

Let's skip mozzarella. Will it be good?

OBSERVATION

What does the color of edge tell me about how good it is?

Common Cause principle

- Common Cause principle: if two random variables X and Y are statistically dependent, then there exists a third variable Z that causally influences both.

Common Cause principle: an example

Structural Causal Models (SCMs)

- Structural Causal Models: a SCM $\mathfrak{C}=\left(\mathbf{S}, P_{\mathbf{N}}\right)$ consists of a set \mathbf{S} of structural assignments

$$
X_{j}=f_{j}\left(\mathbf{P} A_{j}, N_{j}\right), \quad j=1, \ldots, d
$$

where $\mathbf{P A}_{j} \subseteq\left\{X_{1}, \ldots, X_{d}\right\} \backslash X_{j}$ are the parents (direct causes) of X_{j} and P_{N} is the jointly independent distribution of noises.

$$
\begin{aligned}
& X_{1}=N_{X_{1}} \\
& Y=X_{1}+N_{Y} \\
& X_{2}=Y+N_{X_{2}} \\
& N_{X_{1}}, N_{Y} \sim \mathcal{N}(0,1), N_{X_{2}} \sim \mathcal{N}(0,0.1)
\end{aligned}
$$

SCM: properties

- Entailed distribution: an SCM \mathfrak{C} defines a unique distribution over variables X_{1}, \ldots, X_{d}
- Entailed graph: an SCM entails a graph \mathcal{G} obtained by drawing a node for each observable X_{j} and a direct edge from parents $\mathbf{P} \mathbf{A}_{j}$ to X_{j}

$$
\begin{aligned}
& X_{B}=N_{B} \\
& X_{T}=X_{B}+N_{T} \\
& X_{D}=X_{T}+N_{D} \\
& N_{B}, N_{T} \sim \mathcal{N}(0,1), N_{D} \sim \mathcal{N}(0,0.1)
\end{aligned}
$$

Independent Causal Mechanisms

- A structural assignment is called mechanism
- Thanks to independence of noise, functionals are independent:
- Knowledge about one mechanism does not convey information about others
- Intervening on one mechanism does not effect others

SCM: do-interventions

- Interventional distribution: Consider an SCM $\mathfrak{C}=\left(\mathbf{S}, P_{\mathbf{N}}\right)$ with its entailed distribution $P_{\mathbf{X}}^{\mathcal{C}}$. We can replace one (or several) structural assignments to obtain a new SCM. Suppose we intervene on X_{k} :

$$
\tilde{X}_{k}=\tilde{f}\left(\tilde{\mathbf{P A}}_{k}, \tilde{N}_{k}\right)
$$

the entailed distribution of the new SCM is the interventional distribution

$$
P_{\mathbf{X}}^{\tilde{\mathcal{C}}}=P_{\mathbf{X}}^{\mathfrak{C} ; d o\left(X_{k}=\tilde{X}_{k}\right)}
$$

Causal model and interventions

Fig. 1. Difference between statistical (left) and causal models (right) on a given set of three variables. While a statistical model specifies a single probability distribution, a causal model represents a set of distributions, one for each possible intervention (indicated with a in the figure).

Do-interventions in practice

$$
\begin{aligned}
& X_{B}=N_{B} \\
& X_{T}=c \\
& \hline X_{D}=c+N_{D} \\
& N_{B}, N_{T} \sim \mathcal{N}(0,1), N_{D} \sim \mathcal{N}(0,0.1)
\end{aligned}
$$

- Detach the intervened variable. Assign it an arbitrary value, independently from causes.
- Do-intervention \neq conditioning:

$$
P_{T}^{\mathfrak{C} ; d o(D:=d)}(t)=P_{T}^{\mathfrak{C}}(t) \neq P_{T}^{\mathfrak{C}}(t \mid D=d)
$$

Counterfactuals

- Counter-fact: something not happen
- Given a fact, what would have been if we had taken another choice?
- e.g., the pizza is good, what would have it been with pineapple?

SCM: Counterfactuals

- Counterfactuals: Consider an SCM $\mathbb{C}=\left(\mathbf{S}, P_{\mathbf{N}}\right)$ over observables X. Given some observation \mathbf{x}, we define the counterfactual model as the SCM

$$
\mathfrak{C}_{\mathbf{X}=\mathbf{x}}=\left(\mathbf{S}, P_{N}^{\mathfrak{c} \mid \mathbf{X}=\mathbf{x}}\right)
$$

with $P_{N}^{\mathfrak{c} \mid \mathbf{X}=\mathbf{x}}=P_{N \mid \mathbf{X}=\mathbf{x}}$.

- Counterfactual statements are do-interventions in the counterfactual SCM

$$
P_{Z}^{\mathfrak{C}} \mid \mathbf{X}=\mathbf{x} ; d o(Y:=c)
$$

Counterfactuals in practice

$$
\begin{aligned}
& X_{B}=N_{B} \\
& X_{T}=X_{B}+N_{T} \\
& X_{D}=X_{T}+N_{D}
\end{aligned}
$$

$$
N_{B}, N_{T} \sim \mathcal{N}(0,1), N_{D} \sim \mathcal{N}(0,0.1)
$$

- Counterfactual: given the fact that $\mathbf{X}=\mathbf{x}$, what would D have been, had T been set to 0 ?

1. Compute exogenous
2. Apply the intervention

Long story short

- Causal models are more informative than statistical ones
- Causal models entail a set of distributions:
- Observational distribution
- Interventional distribution
- Counterfactual distribution

What we will see

- The confounding problem
- Learning from observational data
- Representative methods from causal learning
fit

Confounding

- Confounding: consider an SCM \mathfrak{C} with direct path from X to Y. The causal effect from X to Y is confounded if

$$
p^{\mathfrak{C} ; d o(X:=x)}(y) \neq p^{\mathfrak{C}}(y \mid x)
$$

Confounding in practice

$$
p^{\mathfrak{C} ; d o(M:=m)}(t) \neq p^{\mathfrak{C}}(t \mid m)
$$

Cause effects discovery

- Confounding is a serious problem: cannot evaluate causeeffect without confounder control.

- Gold standard: randomized interventions. Randomly intervene on the cause and observe eventual effects.

Cause effects discovery

- Randomized interventions may be unethical or too expensive.
- Learn a causal model from observational data.
- Theorem (non-identifiability): for every joint distribution $P_{X, Y}$ of two real value variables, there is a SCM

$$
Y=f_{Y}\left(X, N_{Y}\right)
$$

with X and N_{Y} independent.

Inductive Causation Algorithm

Input: a faithful distribution
Output: equivalence class graph

1. For each pairs of variables seek for the set rendering them independent. If no set exists, then they are connected
2. For each pair of non-adjacent variables with a
 common neighbor c, check if conditioning on c makes them independent. If not set the direction of edges
3. Orient as many edges as possible, e.g., avoid directed cycles

Structural Discovery from Interventions

- Black-box model with unknown interventions
- Iterative score-based optimization

1. Fit functional parameters θ on observational data
2. Draw different causal graphs based on the current belief
3. Score mechanisms on interventional data obtained from the black-box model
4. Update current belief γ according to
 scores and back to (1)

Long Story Short

- Confounding: correlation is not causation
- Cannot learn causal models from observational data
- Representative methods:
- Conditional independence
- Score-based

Any questions?

Part 2
High
dimensional data
Linear and non-linear ICA
Disentanglement
The identifiability problem
Cross-polinination: causality and disentanglement

Part 3
 Causal signals in Visual data
 Causal signal for images
 Causal visual datasets

Moving on

- So far, high-level causal variables
- Causal variables not readily available
- How to find them?

Agenda

The cocktail party problem

Linear Independent Component Analysis (ICA)

- Independent latent components $\mathbf{s} \in \mathbb{R}^{n}$
- Observations $\mathbf{x} \in \mathbb{R}^{n}$
- Mixing matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$
- Generative model:

$$
\mathbf{x}=\mathbf{A} \mathbf{s}
$$

Ambiguities of linear ICA

$\cdot \ln \mathbf{x}=\mathbf{A} \mathbf{s}$, estimate both $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{s} \in \mathbb{R}^{n}$

- We cannot determine:
- Variances of components: multiplicative factors may be canceled by A
- Order of components: we can change the order in the linear combination

Non identifiability of Gaussian case

- Assume orthogonal mixing matrix \mathbf{A} (unit eigenvalues), e.g., rotation matrix
- Gaussian components with unit variances
- Observations $\mathbf{x}=\mathbf{A s}$ are Gaussian and symmetric
- Observations do not expose information about A

Principles of ICA estimation

- Central limit theorem (informal): sum of independent random variables tends toward Gaussian distribution
- Consider a linear combination of x_{i} :

$$
y=\mathbf{w}^{T} \mathbf{x}=\sum_{i} w_{i} x_{i}
$$

- Rewrite $\mathbf{z}=\mathbf{A}^{T} \mathbf{w}$
-Then:

$$
y=\mathbf{w}^{T} \mathbf{x}=\mathbf{w}^{T} \mathbf{A} \mathbf{s}=\mathbf{z}^{T} \mathbf{s}
$$

- Least gaussianity: y corresponds to s_{i}

Non-linear ICA

- Independent latent components $\mathbf{s} \in \mathbb{R}^{n}$
- Observations $\mathbf{x} \in \mathbb{R}^{n}$
- Smooth and invertible non linear mixing function:

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}
$$

- Generative model:

$$
\mathbf{x}=f(\mathbf{s})
$$

The identifiability problem

- For any x_{1}, x_{2} we can always construct $y=g\left(x_{1}, x_{2}\right)$ independent of x_{1} as

$$
g\left(\xi_{1}, \xi_{2}\right)=P\left(x_{2} \leq \xi_{2} \mid x_{1}=\xi_{1}\right)
$$

Ground truth

Observations

Darmois

Solving non-linear ICA with supervision

- Consider the auxiliary supervision u s.t.

$$
p(\mathbf{s} \mid \mathbf{u})=\prod_{i=1}^{n} p_{i}\left(s_{i} \mid \mathbf{u}\right)
$$

-Train a NN to distinguish

$$
\tilde{\mathbf{x}}=(\mathbf{x}, \mathbf{u}) \quad \text { vs. } \quad \tilde{\mathbf{x}}^{*}=\left(\mathbf{x}, \mathbf{u}^{*}\right)
$$

- Under strong variability assumption: identification

Problem Statement

- Disentanglement: low-dimensional sufficient representation with each coordinate (or a subset of coordinates) containing information about only one factor

- No established definition

Disentanglement: Beta-VAE

- Latent variables model:

$$
\mathbf{z}^{(i)} \sim p(\mathbf{z}), \mathbf{x}^{(i)} \sim p(\mathbf{x} \mid \mathbf{z}), \quad i=1, \ldots, N
$$

- Prior over latents: centered isotropic Gaussian $\mathcal{N}(0, \mathbf{I})$
- Reconstruction task with the Gaussian prior as regularization:

$$
\max _{\phi, \theta} \mathbb{E}_{q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\log p_{\theta}(\mathbf{x} \mid \mathbf{z})\right]-\beta D_{K L}\left[q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| \mathcal{N}(0, \mathbf{I})\right]
$$

Disentanglement: factorisation

Challenging Common Assumptions

- Infinite family of entangled functions with same marginal distribution

- Critical unsupervised model selection:
- relevant randomness
- do not correlate with supervised metrics
- Cannot transfer hyperparams

	Datasęt $=$ Shąpes 3 ,					
Reconstruction -	-30	-4	59	22	-21	27
TC (sampled) -	1	5	-11	-8	-11	-2
KL-	-14	-1	-38	-31	-11	-29
ELBO -	-38	-9	48	9	-25	15
	(${ }^{\prime}$)	(B)	(${ }^{1}$)	(D)	(E)	(F)

	Metric $=$ PCI Djsentanglement						
dSprites (I)-	100	95	65	65	34	64	46
Color-dSprites (II)	95	100	61	60	21	63	47
Noisy-dSprites (III) -	65	61	100	68	17	64	59
Scream-dSprites (IV) -	65	60	68	100	36	93	69
Smallinorb (V)-	34	21	17	36	100	21	-9
Cars3D (VI) -	64	63	64	93	21	100	85
Shapes3D (VII) -	46	47	59	69	-9	85	100

Group-theory approach

- Consider ground truth FoVs and inferred latents
- Let \mathcal{G} be a group acting on \mathcal{U}, $g \cdot u: \mathcal{G} \times \mathcal{U} \rightarrow \mathcal{U}$
- Equivariance: $g \cdot f(u)=f(g \cdot u)$ e.g., change the color semantic is equivalent to change the associated feature

- Decomposable: $\mathcal{X}=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \mid g_{i} \cdot x_{j} \neq x_{j} \Longleftrightarrow i=j$ e.g., changing the color semantic does not effect the shape

Disentanglement with few labels

-Can we disentangle with a few labels?

1. Unsupervised training with few labels validation
2. Semi-supervised training (regularization) with validation
3. Fully supervised training

- First two approaches are robust to coarse, noisy and partial labels

Causality for disentanglement

Estimate \hat{S} as components with lowest
$D_{K L}\left(q_{\phi}\left(\hat{z}_{i} \mid \mathbf{x}_{1}\right) \| q_{\phi}\left(\hat{z}_{i} \mid \mathbf{x}_{2}\right)\right)$
set the posterior to be:
$\tilde{q}_{\phi}\left(\hat{z}_{i} \mid \mathbf{x}_{1}\right)=a\left(q_{\phi}\left(\hat{z}_{i} \mid \mathbf{x}_{1}\right), q_{\phi}\left(\hat{z}_{i} \mid \mathbf{x}_{2}\right)\right) \quad i \in \hat{S}$,
$\tilde{q}_{\phi}\left(\hat{z}_{i} \mid \mathbf{x}_{1}\right)=q_{\phi}\left(\hat{z}_{i} \mid \mathbf{x}_{1}\right) \quad$ otherwise

Causality for disentanglement

- Constraint nonlinear ICA $\mathbf{x}=\mathbf{f}(\mathbf{x})$
e.g., speakers positions w.r.t. to microphones not fine-tuned
- Less ambiguities
- ICM principle inspiration: f as independent mechanisms, each influenced by a factor

$$
\log \left|\mathbf{J}_{\mathbf{f}}(\mathbf{s})\right|=\sum_{i=1}^{n} \log \left\|\frac{\partial \mathbf{f}}{\partial s_{i}}(\mathbf{s})\right\|
$$

Disentanglement and causality (bivariate case)

- Observational data coming from different interventional settings $\epsilon=1, \ldots, E$
- In a SCM $X_{i}=f_{i}\left(P A_{i}, U_{i}\right)$, exogenous noises as independent component to unmix
- As in nonlinear ICA, train a NN to predict the interventional setting
- Independence tests for causal direction

Disentanglement and Causality

- Sparse mechanisms assumption
- The correct parameterization adapts faster to interventional data
- Reverse the transformation of an implicit decoder

Any questions?

Agenda

Part 2
High
dimensional data
Linear and non-linear ICA
Disentanglement
The identifiability problem

Cross-polifination: causality
and disentanglement

Causal signals in Images?

- Causal dispositions: the presence of an object causes the presence of certain objects
- e.g., the presence of cars causes the presence of wheels
- PASCAL VOC 2012 classification dataset (20 classes)
- airplane, bicycle, bird, boat, bottle, bus, car, ...

Features' properties

- Causal vs Anti-causal:
- Causal: which cause the presence of the object - Anti-causal: caused by the presence of the object
- Object vs Context:
- Object: within the bounding box
- Context: outside the bounding box

Causal signals in Images?

Causal vs Anticausal Features

- Train a model to predict the causal direction between X and Y on synthetic data (X, Y)
- Get features from a pre-trained feature extractor
- Train a classifier on top of the feature extractor
- Predict causal direction on (feature, object logit)
- Select top 1% causal and anti-causal features

Object vs Context features

- Features from pre-trained models
- Object features react violently to black out of bounding boxes
- Context features react violently to black out of context

Observed correlations

Disentanglement data

Image datasets

Image datasets

Long Story Short

- Causal signals leave traces in images
- Toyish causal visual datasets

Any questions?

- I am sorry, no pizza at the canteen today

Causality vs probabilities

d-separation

- Definition: In a DAG \mathcal{G}, a path between nodes i_{1} and i_{m} is blocked by a set \mathbf{S} (with neither i_{1} and i_{m} in it) if there exists i_{k} such that one of this holds:
- $i_{k} \in \mathbf{S}$ and:

$$
\begin{aligned}
& i_{k-1} \rightarrow i_{k} \rightarrow i_{k+1} \text { or, } \\
& i_{k-1} \leftarrow i_{k} \leftarrow i_{k+1} \text { or, } \\
& i_{k-1} \leftarrow i_{k} \rightarrow i_{k+1}
\end{aligned}
$$

- $\left(\left\{i_{k}\right\} \cup \mathbf{D E}_{i_{k}}\right) \cap \mathbf{S}$ and:

$$
i_{k-1} \rightarrow i_{k} \leftarrow i_{k+1}
$$

Markov property

- Given a DAG \mathcal{G} and a joint distribution $P_{\mathbf{X}}$
- Global Markov property:

$\mathbf{A} \Perp_{\mathcal{G}} \mathbf{B}|\mathbf{C} \Rightarrow \mathbf{A} \Perp \mathbf{B}| \mathbf{C}$

- Local markov property: if each variable is independent of its nondescendants given its parents
- Markov factorization property:

$$
p(\mathbf{x})=p\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1} p\left(x_{j} \mid \mathbf{P A}_{j}^{\mathcal{G}}\right)
$$

Markov equivalence class

- $\mathcal{M}(\mathcal{G})$ set of distributions Markovian to the DAG \mathcal{G}
- \mathcal{G}_{1} and \mathcal{G}_{2} are Markov equivalent if $\mathcal{M}\left(\mathcal{G}_{1}\right)=\mathcal{M}\left(\mathcal{G}_{2}\right)$
- Markov equivalence class:

$$
\left\{\mathcal{G}^{\prime} \text { s.t. } \mathcal{M}\left(\mathcal{G}^{\prime}\right)=\mathcal{M}(\mathcal{G})\right\}
$$

Group-theory approach

Identifiability approaches

- Model class restriction: limit the complexity of structural functionals
- Linear models with non-Gaussian additive noise
- Nonlinear additive noise models
- Independence between cause and effect mechanism:
- Information-geometric: check for zero covariance between structural functionals and cause
- Trace method: the eigenvalues of functional mapping tune to input cause
- Algorithmic independence with Kolmogorov complexity

