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Abstract

Causal Representation Learning (CRL) aims at identifying high-level causal factors
and their relationships from high-dimensional observations, e.g., images. While
most CRL works focus on learning causal representations in a single environment,
in this work we instead propose a first step towards learning causal representations
from temporal sequences of images that can be adapted in a new environment,
or composed across multiple related environments. In particular, we introduce
DECAF, a framework that detects which causal factors can be reused and which
need to be adapted from previously learned causal representations. Our approach
is based on the availability of intervention targets, that indicate which variables
are perturbed at each time step. Experiments on three benchmark datasets show
that integrating our framework with four state-of-the-art CRL approaches leads to
accurate representations in a new environment with only a few samples.

1 Introduction

Causal Representation Learning (CRL) [15/117} 28} [35] aims at identifying high-level causal factors
and their relationships from underlying low-level observations, e.g., images. While learning structured
and disentangled representations has proved effective for interpretability, efficiency and fairness of
deep learning models [10, [20, [31], most methods assume independent factors of variation. This
assumption is often not met in real-world applications, which hinders the generalization capabilities
of these methods [4} 5127, 30]. CRL generalizes the disentanglement setting by considering potential
causal relations between the latent causal variables. Recent works rely on auxiliary variables [11}[19],
non-stationarity [34}|35l], sparsity [[14}[15]], intervention targets [16H18|] and counterfactuals [2}32] to
identify the causal factors. Causal representations retain the modular nature of the associated causal
generative model: an external change, i.e., an intervention, on a specific target variable will not affect
the causal mechanism, i.e., the conditional distribution of any other variable given its parents [24].

While most CRL works focus on learning causal representations in a single environment, in this work
we instead propose a first step towards learning causal representations from temporal sequences of
images that can be adapted in new environments, or composed across multiple related environments.
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Figure 1: Overview of our approach for the adaptation task in Pong, where the source environment
on which we learn the initial causal representation models the position of the ball as Cartesian
coordinates, while the targetr environment uses polar coordinates for the ball position.

We are motivated by leveraging the implicit modularity of causal representations, as well as many
real-world applications in which we want an agent to leverage its previous knowledge and adapt to
changes in the environment with the least interactions possible.

In particular, we consider the TempoRal Intervened Sequences (TRIS) setting [17]]. In this setting we
observe temporal sequences of high-dimensional observations of an underlying causal system, and at
each time step any of the causal variables might be intervened. We also assume that we have labels
for which variables were intervened at each time step, represented as a binary intervention target
vector. We leverage this information in DECAF (DEtect Changes and Adapt Factors), a framework
that detects which causal factors can be reused and which need to be adapted from previously learned
causal representations. DECAF can be combined with any CRL approach that works in TRIS.

To motivate our approach, we show an application of our framework for the adaptation task in Pong
in Fig.[1] In the source environment, we exploit the available intervention targets I* at each timestep ¢
to learn the causal representation of the system, including the position of the two paddles and the ball.
In this environment the position of the ball is measured in Cartesian coordinates x and y. Instead,
in the farget environment, the dynamics of the ball are modelled in polar coordinates, radius r and
angle 0. Hence also the available interventions in this environment are on changing either the radius
or the angle of a ball. In this setting, DECAF first learns a causal representation learned in the source
domain using a standard CRL approach with an encoder. It also trains a target classifier to predict the
intervened variables I**! at time ¢ + 1 from the predicted latent states z* at time ¢ and z**! at time
t + 1. When applying the target classifier to the new environment, DECAF exploits the discrepancies
in the predicted and the intervened targets to detect which of the causal factors need to be adapted.
Only these factors are then adapted by training a normalizing flow (NF) with a transition prior and
an auxiliary target classifier that enforces that each newly learned latent variable models at most one
intervention target. The other causal factors can be directly used in the new environment. As we
show in the experiments, we can use a similar approach also in compositional settings in which we
can combine representations from multiple source environments.

The contribution of this work is three-fold: (i) we formalize a generative model for the changes across
environments for which we can adapt or compose causal representations, (ii) we propose DECAF
(DEtect Changes and Adapt Factors), a framework that detects changes, adapts and composes causal
representations, (iii) we validate the benefits of repurposing learned causal representations on three
existing CRL benchmarks, for which we develop several adaptation and composition tasks.



2 Background

We assume our data follow the TempoRal Intervened Sequence (TRIS) setting [[17]. In this setting
we assume that there is an underlying unobserved causal system, and at each time step there can
be an intervention on a set of causal variables. We only observe a time series of high-dimensional
observations of it and the labels describing which variables have been intervened on, the intervention
targets. Here we summarize the assumptions, and refer to [17] for details.

Latent causal process. We assume the latent causal process can be described by a Dynamic
Bayesian Network (DBN) [3 23] over a set of K multidimensional causal variables (C4,...,Ck)
that generates the data at hand. At each time step, we only allow that a variable C! can be potentially
a parent of a variable C‘** for i,j € [1..K], i.e. the DBN is first-order Markov and has no
instantaneous effects, and the causal relations are stationary, i.e., the causal parents repeat across
all timesteps. In other words, each causal variable follows the structural causal equation C} =
fi(pa(C?), ;) for i = [1..K], where pa() are the parents, which are a subset of the variables in the
previous time step, and ¢; is its exogenous noise. We assume the noises ¢; for i = [1..K] to be
mutually independent. Causal factors can be multivariate, i.e., C; € wa with M; > 1 where D;
is R for continuous variables and Z for discrete ones. Hence, the causal factor space is defined as
C =D x DY x ... x DY We denote as C* = (C%,...,C%) the causal factors at time step t.

Interventions. We assume that the causal system can be subjected to an intervention at each
time step and that if it happens, we know the intervention targets. In particular, a binary vector
I' € {0,1}¥ indicates that a variable C! is intervened upon iff I! = 1. Intervention values are
unobserved. Interventions can be soft [6], e.g. inducing a change in the mechanism of the intervened
variables without necessarily making the target, or hard, e.g. do-interventions do(C; = ¢;) [24].
Multiple variables can be intervened simultaneously. We model potential dependencies between
intervention targets with an unobserved regime variable R! [22]. We assume faithfulness of the
distribution, hence there are no further independences than those given by the causal graph.

Observation function. At each time step ¢, we observe a high-dimensional observation of the
latent causal factors. Let f : C x U/ — X be the invertible observation function from the space of
factors C and noises U to the observation space X'. We define the high-dimensional observation
Xt = f(C4,CL, ..., CL, U, where Ut € U.

Adaptation of CRL approaches to TRIS. Since the TRIS setting was originally developed for
CITRIS [17], we can use it as is in this setting. We also adapt three other state-of-the-art CRL
methods to work in the TRIS setting. iVAE [11]] assumes that the causal variables are conditionally
independent given some auxiliary information. In TRIS, this information can be provided by
{C* I**1}. LEAP [33] leverages nonstationarity that is captured by a categorical auxiliary variable
u, which can be represented with the intervention target vector I**!. Given actions with unknown
targets, DMSVAE [15]] identifies the causal factors when the underlying causal graph has a sparse
structure. In TRIS, we consider the information target vector as the action itself.

Since we have multidimensional causal variables, we also need to learn a mapping from a latent space
Z C RM with M > K + 1 to the causal space C. We call this mapping the assignment function
¢ 2 [1.M] — [0..K]. We denote the latent variables assigned to a causal variable C} as 2!, for
i € [1..K], while we denote with zfpg the latent variables that are not assigned to any causal variable.
CITRIS learns 1) as part of its training, but iVAE, LEAP and DMSVAE do not and their identifiability
is up to permutation and element-wise transformation. To compare them, we then use supervision to
match the latent space learned by iVAE, LEAP and DMSVAE with the ground truth causal variables.

3 A simple generative model of environments for adaptation and composition

In this section we propose a simple generative model for changes across environments, for which our
framework will be able to adapt and compose causal representations.



3.1 Adaption of causal representations.

For simplicity, we assume that we have two environments, the source .S and the target 7". We assume
there is an underlying latent causal process with underlying causal variables C* that is the same
for both environments. In the source, we consider a set of source causal variables C’ts, which are
an invertible function of the underlying causal variables C*. Similarly, we consider a set of target
causal variables Cfp, which are an invertible function of C*. In general, we will assume that some of
underlying causal variables C?, are shared across the environments and with the underlying causal
model, while others C?, can change across the environments and w.r.t. the underlying causal model.

More formally, we will assume that the underlying causal variables C* with size K can be partitioned
in C!, with size K., and C?, with size K,. The source causal variables C% can be then defined
as Ct = (hg(CY,), Ct,), where hg is an invertible function. Similarly, the target causal variables
are defined as Ol = (hr(CL,), Ct,) for an invertible hr. We denote with K g the number of source
causal variables and with K1 the number of target causal variables. The number of causal variables
may change between source and target, as well as with respect to the underlying causal variables.
Hence, we allow for refinement or coarsening of variables. However, the invertible functions h;, h
imply that the joint dimensionality of the causal variables is always constant.

3.2 Composition of causal representations.

We can extend the same notation to the case of composition, in which there are multiple source
environments and a single target environment. We again assume that there is an underlying causal
model with variables C*. Let ' be the source causal variables of one of the L sources, and define
Ct », as the shared causal variables between the S;-th source and the target environment. We assume

that the target causal variables C. are a composition of source causal variables that have been
independently learned on the source environments. More formally:

Cé“: (hT(CéhT)’Cémczhlv'">C§hL)7 (D

where C?, are the target causal variables shared with the underlying causal graph and C’ﬁhT are the
causal variables that are changed in the target environment with respect to the underlying causal
variables through the invertible function hr. If the shared causal variables Cy},, are not disjoint, then
the intersections will still be identical, and we can remove the duplicates.

4 Detection, Adaptation and Composition of Factors

Here we describe our framework DECAF and show how it adapts or composes causal representations
in environments that follow our generative model. We first introduce how we detect the changed causal
variables, based on the discrepancies in predicting the intervention targets. We then describe how we
adapt the changed factors with a normalizing flow and how we compose causal representations.

Changing variable detection. Using a CRL approach adapted to the TRIS setting, as described in
Sec.[2] we can learn a causal representation on the source data. We also learn a rarget classifier [17]
that predicts the next step intervention targets /. f *1 from the current latent state z* and the next step
latent state assigned to the causal variable C';, which we denote as szl Intuitively, when we run
the target classifier in the target environment, we expect that its accuracy would drop for the causal
variables that have changed from the source to the target. In particular, for k € [1..K], we define
X 1.=1 :={X§ | Il = 1,¢ € [1..T]} as the set of observations on the source environment S in
which Cj; has been intervened upon. Similarly let X 7, =y := {XkL | It = 1,t € [1..T]} be the set
of observations on the target environment 7" in which C; has been intervened upon.

We define FPRY ;(j) and FNRgi (7) as the False Positive Rate and False Negative Rate for intervention
predictions of the classifier on the source environment, taking as inputs the latents learned from
Xs,1,=1 and the latent assigned to the variable z,,, and predicting the intervention target /;. Similarly,
we define the False Positive Rate and the False Negative Rate for intervention predictions on the farget
environment as FPRY. . (j) and FNR%. ; (j). We detect the changing causal factors C..;, by considering
differences in false positive rates or false negative rates greater than threshold 7

Con = {j | 34,k € [1..K] s.t. [FPRY.;(j) — FPRY ;(j)| > 7 V |[FNRY:;(j) — FNR;(j)] > 7}. ()



As the target classifier generally predicts an intervention when the dynamics differ from the learnt
observational ones, it tends to over-predict interventions in unseen environments. Thus, we found
that using FPR to consistently outperforms using FNR and apply it throughout our experiments.

Adaptation. Once we have identified the changing causal variables C.j, we adapt their represen-
tation zp, € RMen by a Normalizing Flow (NF) [26]. The Normalizing Flow maps z.;, to a new
representation 7 € RMe» with the same dimensionality, while guaranteeing invertibility between the
representations. Similarly to CITRIS [17]], we train this flow with a transition prior pg parameterized
by ¢ and condition each latent on exactly one intervention target /., of the changing variables:

po(r I I = 11 pelril LD, &

Cen; €Cen
where 1.y, is the learnt assignment of the components of z.j to the causal variable Cyp,, cn :
[1..M.,] — [1..Kp]. The model is optimized to maximize the log-likelihood of the target samples:
d NFw (Zch)

det
¢ dzch

L = logp.., (zen) = log ps(NFu(zer)) + log , “)

where NF, represents the normalizing flow with parameters w, and the original representation 2.y, is
kept frozen. During inference, we construct the final representation by replacing the changed causal
variables z.j, with the adapted representation r = NF,, (2., ).

Composing causal factors. Besides adapting causal representations, we can also try to compose
the representations that we have identified across a set of source environments, to form the causal
representation of a new target environment. More formally, consider the representation of L source
environments zg,, ! = [1..L]. First, we detect the causal variables Cyy,, that are shared between each
source representation C's, and the target using the changing variable detection described previously.
In a second phase, we then concatenate the latent representation of all identified shared variables, i.e.
Ziarget = {2sh, |l € [1..L]}. With that, we construct a representation that identifies the causal variables
in the target environment if all causal variables can be found in the provided source environments.

5 Experiments

We evaluate DECAF on three benchmark datasets: the Voronoi Benchmark [18]] which is a synthetic
image dataset with random neural networks modeling the causal mechanisms; InterventionalPong [17]]
which simulates an Atari Pong game [1]] with six causal variables; and Temporal Causal3DIdent [17}
32|, a visually challenging dataset of 3D rendered objects with 10 causal variables describing the
object and scene properties, see App. On these datasets, we apply DECAF to four different CRL
approaches: CITRISVAE [17], LEAP [35], DMSVAE [15] and iVAE [[11].

Baselines. For adapting causal representations from a source to a target environment, we compare
DECAF to two simple adaptation baselines for reference, for each of the CRL methods: (1) Oshot,
where the model trained on the source environment is frozen and directly evaluated on the target data,
and (2) £t, where the source model is fine-tuned on the target data.

Evaluation metrics. We evaluate the approaches based on the correlation between inferred latents
and the ground truth causal factors, as estimated using the R? coefficient of determination [33]
and Spearman’s rank correlation [29]]. For methods that only identify the causal variables up to
permutations, we follow previous works [[15[17,119] by assigning latents to the ground truth causal
variable with the highest correlation. This results in a correlation matrix where the diagonal shows
the correlation between matched learned and ground truth causal variables (high better), and off-
diagonal elements the correlation to other variables (lower better). We propose a summary metric
similar to the F1 score that combines the average diagonal correlation diag and the average max
off-diagonal correlation off_diag through a harmonic mean. diag is intuitively similar to recall,
while (1 — off_diag) is similar to precision. We define then the Combined Correlation (CC) as:

diag(l — off_diag) )
diag + (1 — off_diag)’
A perfectly disentangled model achieves a score of C'C' = 1, while it decreases for models that have

low correlation between its identified latents and the ground truth causal variables (low diag), or
large cross correlation across variables (high off_diag). Full results are reported in App.

cC =
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Figure 2: Spearman Combined Correlation (1) of inferred latents to the ground truth changed variables.
In the boxplot, CRL approaches are color-coded. The proposed method has a darker color. Adaptation
in (a) Voronoi Benchmark, (b) InterventionalPong, (¢) Temporal Causal3DIdent; (d) Composition
for Temporal Causal3dIdent with sources CA-jHUE and ROT-HUE; (e) Effect of target samples on
adaptation in InterventionalPong for DMSVAE.

Adaptation of causal representations. We conduct experiments using the Voronoi Benchmark with
six causal variables, implementing the change from a source environment (REG) to the target (CH)
by applying a randomly initialized NF on three causal variables. This simulates a coordinate system
change for these three variables, with interventions being applied in the new system. Results on 750
data points from the target dataset over five seeds are presented in Fig.[2a] Both the baselines and
the DECAF approaches show high dependency on the source-to-target variation, as evidenced by
the performance variance. Yet, all DECAF approaches achieve a high CC score and outperform the
baselines for CITRIS, LEAP and iVAE, showing its benefit and efficiency of adapting its source
representation. In the InterventionalPong dataset, we change the ball coordinate system from Cartesian
in the source domain to polar in the target (CA — P0), providing 5K samples in the target environment.
For all considered CRL methods, the combination with DECAF beats the adaptation baselines as
seen in Fig. [2b] although notable performance drops are observed for both iVAE and LEAP methods,
where for one seed, the classifier fails to separate intervention targets. With more samples, £t can
catch up to DECAF as seen in Fig. 2e] Yet, the low performance of training from scratch shows
the importance of adaptive representations. Finally, in Temporal Causal3DIdent, we investigate the
adaptation of the object position variables to a ROTated (ROT) x-y coordinate system, CA — ROT
with 1K total samples, see Fig.[2c|averaged over 5 seeds. As can be noted, DECAF is still competitive
in the more visually complex scenario. While fine-tuning proves effective for CITRISVAE, in the
other settings DECAF improves over the baselines. Notably, the DMSVAE approach exhibits high
variance, with three runs detecting only one of the two changed variables.

Composition of causal representations. In the Temporal Causal3DIdent dataset, we consider two
source environments: one with Cartesian position and jointly intervened hue (CA-jHUE), and another
with a rotated coordinate system for position but independent interventions on hue (ROT-HUE), CA-



JHUE+ROT-HUE— CA-HUE. The target environment composes the Cartesian position of the first source
environment with the individual hue variables of the second environment, requiring the algorithms to
identify which variables can be reused and combined from the sources. As shown in Fig.[2d| DECAF
finds the correct variables to compose and, especially for CITRIS, provides significant gains over the
baselines, while only requiring 1k samples. For results on other datasets, refer to App.[B]

6 Conclusions

We introduce DECAF, a framework that is a first step towards adapting and composing causal
representations. Our approach detects changing causal variables in a new environment and provides a
method to adapt them with a limited amount of target samples.
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A Experimental Details

In this section we provide further details on the experimental setup, including information on the
datasets[A.T]and implementation details [A.2]

A.1 Datasets

Voronoi benchmark We considered the non-instantenous version of the Voronoi benchmark [[18]]
rendering colored Voronoi tiles whose colors are a mixed version of the ground truth generating
factors. The underlying causal representation model is synthetically generated: starting from a random
DAG, each variable is evaluated as sample from a Gaussian centered on the output of the mechanism
randomly initialized neural network. Finally, the variables are mixed by a random normalizing flow
and depicted as colors of a fixed-structure Voronoi diagram. We experimented with the 6 variables
version of the dataset where all variables undergo perfect interventions. To allow for the change, we
generated a version of the dataset where the 3 changed variables are fed to a randomly initialized NF.
We denote with REG and CH the regular and changed versions of the dataset, respectively. In another
version of the dataset, we enable for joint interventions on a group of 2 variables, while making sure
there is no overlap between changed and coarse variables. We denote the coarse version of the dataset
as j.

Interventional Pong We generated sequential data starting from InterventionalPong [[17]], based
on the known Atari game Pong [1]]. Six high-level causal variables underlie the generated data:
ball-pos-x, ball-pos-y, paddle-left-y, paddle-right-y, score-left, score-right.
The game dynamics follow two paddles playing one versus the other with the aim to score, i.e.,
let the ball go over the opponent’s line of movement. The ball bounces on horizontal boundaries.
Interventions are available for all causal variables, the scores are considered as a coarse variable. We
generated multiple versions of the dataset, depending on different parameterizations of the interven-
tions. Specifically, we considered a polar version where the ball position is represented in a polar
coordinate system whose origin is the centre of the playground. Hence, the latents associated with the
ball position ball-pos-x and ball-pos-y are replaced by ball-pos-radius and ball-pos-angle.
Further, we considered coarse cases where a group of causal variables is always jointly intervened
on and, hence, cannot be disentangled. In particular, we focused on the granularity of interventions
associated with the paddles that could be independently (PA) or jointly (jPA) intervened.

Temporal Causal3DIdent We adapted the common benchmark of Temporal Causal3DIdent
from [32] based on the temporal version in [[17]. Samples visualize a rubber 3D object in the
centre of a rendering scene. The dynamics are based on trigonometric functions. Observations
follow 10 causal factors: pos-x, pos-y, pos-z, rot-a, rot-f3, rot-spotlight, hue-obj,
hue-spotlight, hue-background, obj-shape. All causal factors are subject to interventions.
We adapted the dataset to support a different parameterization of the object position and different
intervention granularities. Precisely, we generated a version of the dataset with rotated z-axis of 30
degrees. As a consequence, the Xy coordinate system is rotated by 30 degrees anticlockwise. We
indicate the rotated version of pos-x, pos-y with rot-pos-x, rot-pos-y respectively. We considered
different levels of coarsening for the hue variables and denote as jHUE the version of the dataset
where hue variables are jointly intervened.

A.2 TImplementation details and hyperparameters

A.2.1 Source models

VAE architecture In order to have the different CRL approaches achieving their highest perfor-
mance on source environments, we tested different variants of the same architecture. A convolutional
encoder outputs the mean and standard deviation parameters of independent Gaussians. After sam-
pling, the embeddings are decoded for reconstruction. For computational reasons, the specific
architecture depends on the dataset. In Voronoi Benchmark and InterventionalPong the encoder
is a 5-layer CNN + 2-layer MLP with a hidden dimension of 32. The decoder uses a symmetric
architecture to the encoder (2-layer MLP and 5-layer deconv). In Temporal Causal3DIdent we
followed the architecture in [17]] and employed a 10-layer CNN and a 10-layer Resnet [§] decoder
with a hidden dimension of 64.
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On Voronoi Benchmark and Interventional Pong datasets we found an autoregressive flow
prior [13} 26] to be beneficial on CITRISVAE and DMSVAE, following the architecture in [17].
The Gaussian samples from the encoder are fed to a 4-layer normalizing flow including Activation
Normalization [12], Invertible 1 x 1 convolutions [12]] and autoregressive affine coupling layers.

Transition prior The transition prior accepts as input the current time step and some auxiliary
information to predict the next time step. In CITRISVAE the transition prior is a 2-layer MLP fed
with z* and I'*! as input to predict z!T1. Other baselines employ a 3-layer MLP. Following [17]],
we adapted the iVAE prior to accept as input the concatenation of the current time step z* and the
intervention target 71, Similarly, both LEAP and DMSVAE priors accept as input a masked version
of the concatenation [z!, I**1] where the mask is learned during training. Due to the density of
the temporal graph of both Voronoi Benchmark and InternventionalPong, we found that restricting
DMSVAE to learn the action mask only proved beneficial for the approach.

All the source models are trained with a batch size of 512 samples using AdamW [21]] optimization
with a learning rate of le-3 and Cosine Warmup scheduler. We used the Swish [9, 25]] non-linearity.
We regularized the source models to avoid overfitting on the source data by controlling for the source
training epochs and adding a L?-norm loss on the representation with hyperparameter Breg- We
summarized the used hyperparameters in Tab. [T}

A.2.2 Adaptation and Composition

Fine-tuning. The fine-tuning approach resumes the training of the model with the same causal
representation strategy of the source model, e.g., a model pre-trained with the CITRISVAE strategy
adapts to the new environment using the same CITRISVAE algorithm. Fine-tuning adapts the model
with 2500 epochs and a batch size of 512 using AdamW optimizer with a learning rate of le-3 and
Cosine Warmup scheduler.

Adaptation. We implemented the adaptation approach using an autoregressive normalizing
flow [26]] following [17]. The flow is based on the MADE [7] architecture with 16 neurons per
latent variable. The flow includes Activation Normalization and 1 x 1 invertible convolutions. The
depth of the flow depends on the dataset. As a flow prior, we employed a 2-layer autoregressive
network that follows the same MADE architecture as the normalizing flow. For each latent variable,
the flow outputs the parameters of a Gaussian distribution. DECAF adapts the model in 5000 epochs
with a batch size of 1024 samples. We optimize using AdamW with a learning rate of le-2 and
weight decay 5e-3. We applied the same Cosine Warmup scheduler as in the fine-tuning strategy.

Composition. DECAF stitches together the causal factor representations of modules that are
detected to be invariant with respect to the target environement. Since the latent to factors assignment
allows for a variable number of latents per factor, we cannot guarantee that the resulting representation
matches the dimensionality of the pretrained autoencoder. To this end, we learn a projection function
p projecting the representation to the same dimensionality as the source embedding. Thus, we
freeze the representation model and learn it on the source data via reconstruction. In practice we
parameterize p with a 2-layer feedforward network having 128 hidden dimensionality and Swish
non-linearity. The projection function is trained with AdamW, a learning rate of 1e-3 and batch size
512.

We report the hyperparameters used for adaptation in Tab.[2]

B Full Results

Tables [3] 4 and [5]report the complete results on the adaptation setting using the correlation diagonal
(diag) and off-diagonal (off-diag). Similarly, Tables [6] report the correlation metrics for the
considered composition settings.
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Voronoi benchmark/InterventionalPong

Hyperparameter CITRISVAE LEAP DMVAE iVAE

Learning rate —- le-3 —

Learning rate warmup —- Cosine Warmup (100 steps) —-

Optimizer — AdamW [21] —-

Batch size —- 512 —-

Number of epochs 75(V)/125(P)  100(V)/200(P)  75(V)/175(P)  100(V)/ 200(P)

KLD Factor (/) — 1.0 —- 0.5

Num latents —- 16 —-

Model variant VAE+NF VAE VAE+NF VAE

Encoder —- 5 layer CNN + 2 linear layers —-

Prior layers 2 3 3 3

Decoder —- 5 layer (deconv-)CNN + 2 linear layers —-

Hidden dimensionality — 32—

Activation function —- Swish [25] —-

Target classifier weight 2 —-n.a. —-

Sparsity regularizer n.a —-0.01 —- n.a

Discriminator weight n.a 0.05 —-n.a. —-
Temporal Causal3DIdent dataset

Hyperparameter CITRISVAE LEAP DMVAE iVAE

Learning rate —- le-3 —-

Learning rate warmup —- Cosine Warmup (100 steps) —-

Optimizer —- AdamW [25] —-

Batch size —- 512 —-

Number of epochs —- 600 —-

KLD Factor () —1—

Num latents — 32—

Model variant VAE+NF VAE VAE+NF VAE

Encoder —- 10-layer CNN —-

Prior layers 2 3 3 3

Decoder —- 10-layer ResNet —-

Hidden dimensionality —- 64 —-

Activation function —- Swish [25] —-

Target classifier weight 2 —-n.a. —

Sparsity regularizer n.a —-0.01 —- n.a.

Discriminator weight n.a 0.1 —-n.a. —-

Table 1: Summary of the hyperparameters for all source models trained on the Voronoi benchmark,
InterventionalPong and Temporal Causal3DIdent dataset,
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Hyperparameter

DECAF Adaptation
Voronoi Benchmark

InterventionalPong  Temporal Causal3DIdent

Learning rate

Learning rate warmup
Optimizer

Batch size

Number of epochs

KLD Factor (3)

Hidden dimensionality
Activation function

Target classifier weight
Num flows

At Least one (BaLo)
L2-Norm regularizer (Breg)
Changed module threshold (1)

— le-2 —-
—- Cosine Warmup (100 steps) —-
— AdamW [21] —-
— 1024 —-
—- 5000 —-
S
64—
—- Swish [25] —
2
2 —4—
4 —2—
4 —2—
0.15 0.2

0.1

Hyperparameter

Fine-tuning
Voronoi Benchmark

InterventionalPong ~ Temporal Causal3dIdent

Learning rate
Learning rate warmup
Optimizer

Batch size

Number of epochs

—- le-3 —-
—- Cosine Warmup (100 steps) —-
— AdamW [21] —-
— 512 —-
—- 2500 —-

Hyperparameter

DECAF Composition
Voronoi Benchmark

InterventionalPong  Temporal Causal3DIdent

Learning rate

Learning rate warmup
Optimizer

Batch size

Number of epochs

Changed module threshold (1)

—- le-3 —
—- Cosine Warmup (100 steps) —-
—- AdamW [21] —-
—- 512 —
10 —-
0.15 0.2

0.1

Table 2: Summary of the hyperparameters used for addressing the target environment.
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Figure 3: Visualization of the adaptation of the different CRL appoaches for the TRIS setting and
learning of the target classifier on a pre-trained representation. (a) CITRISVAE is used as
is and makes available the classifier and the assignment 1) for later re-use. (b) LEAP [33]]: since
intervention targets are a source of non-stationarity, the previous time step and the intervention target
are concatenated and masked to condition the LEAP transition prior. (c) DMSVAE [13] conditions the
transition prior on the concatenation of previous time step and intervention targets, masked according
to the learnt graph. (d) iVAE [11]] conditions the prior on the concatenation of previous time step and
intervention targets. For LEAP, DMSVAE and iVAE we learn a target classifier and the assignment 1
on top of the frozen representation.
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Voronoi Benchmark, REG-j+CH-i->REG-i (750 samples)
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(a) Voronoi Benchmark, REG-j+CH-i—REG-i (750 Samples)

InterventionalPong, CA-jPA+PO-PA->CA-PA (5K samples)
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&

(b) InterventionalPong, CA-jPA+PO-PA->CA-PA (5K Samples)
Figure 4: Composition of causal representations in (a) Voronoi Benchmark with sources REG-j and
CH-1; (b) InterventionalPong with sources CA-jPA and PO-PA.
B.1 Other composition settings

In Figure[dwe report results on the composition setting in Voronoi Benchmark and InternvetionalPong.

B.2 Increasing number of target samples

In Figure 5] we report results on the adaptation of causal representations when increasing the number
of target samples.
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Figure 5: Adaptation with increasing number of target samples. Rows: CITRISVAE, LEAP,
DMSVAE and iVAE. Columns: Voronoi Benchmark, InterventionalPong, Temporal Causal3dIdent.
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Approach Adaptation R? diagt R?off-diag | Spearmandiag? Spearman off-diag |

CITRISVAE  Oshot 0.24 +0.09 0.56 + 0.05 0.40 +o0.10 0.71 £ 0.03
ft 0.37 +o0.14 0.35 +0.07 0.57 013 0.56 +0.06
DECAF (Ours)  0.72 +0.24 0.18 +0.22 0.83 £ 0.8 0.34 +023
LEAP Oshot 0.67 £o0.15 0.23 +o0.10 0.78 £ 0.13 0.43 £o.12
ft 0.60 -+ 0.08 0.29 +0.07 0.74 +0.09 0.50 =+ 0.07
DECAF (Ours)  0.79 +0.09 0.25 +0.12 0.88 + 0.06 0.44 +0.09
DMSVAE Oshot 0.67 +o.16 0.23 +o0.10 0.78 £ 0.13 0.42 £ o012
ft 0.63 +0.10 0.33 £ 0.10 0.78 + 0.06 0.55 +0.09
DECAF (Ours) 0.54 +o0.18 0.26 +0.14 0.70 +0.14 0.44 +o0.16
iVAE Oshot 0.67 +o0.16 0.23 +0.10 0.78 £ 0.14 0.43 £o0.12
ft 0.59 +o0.08 0.29 + 0.06 0.73 +0.09 0.50 + 0.07
DECAF (Ours) 0.70 +o.16 0.13 +o0.11 0.82 +o0.11 0.29 +o0.13

Table 3: Voronoi Benchmark, REG -> CH (750 samples)

Approach Adaptation R? diagt R?off-diag | Spearmandiag? Spearman off-diag |
CITRISVAE  Oshot 0.60 + 0.01 0.60 + 0.01 0.53 +0.01 0.55 +0.01
ft 0.77 +0.01 0.34 +0.02 0.69 +0.01 0.33 £0.02
DECAF (Ours)  0.93 +0.03 0.09 +0.04 0.94 +0.03 0.14 +0.06
LEAP Oshot 0.85 +0.01 0.24 +0.01 0.87 +0.01 0.36 +0.01
ft 0.64 +0.02 0.16 +0.02 0.72 +0.02 0.28 +0.02
DECAF (Ours) 0.84 +0.04 0.18 +0.07 0.86 +0.06 0.26 +0.03
DMSVAE Oshot 0.50 +0.01 0.25 +0.01 0.57 +0.00 0.33 £ 001
ft 0.53 +0.04 0.18 +0.03 0.59 +0.04 0.30 +0.01
DECAF (Ours) 0.61 +o0.01 0.14 +0.01 0.65 +0.01 0.21 +0.01
iVAE Oshot 0.59 +0.04 0.53 +0.01 0.53 +0.03 0.49 +0.02
ft 0.58 +0.03 0.51 +o0.01 0.55 +0.02 0.48 +0.03
DECAF (Ours) 0.71 +0.17 0.20 +0.19 0.77 £ 0.19 0.27 +0.15

Table 4: InterventionalPong, CA—PO (5K samples)

Approach Adaptation R? diag? R?off-diag| Spearmandiag? Spearman off-diag |
CITRISVAE  Oshot 0.76 + 0.00 0.28 +0.00 0.87 +0.00 0.48 +0.00
ft 0.95 +0.01 0.01 +0.01 0.98 -+ 0.00 0.06 +0.02
DECAF (Ours) 0.92 +0.04 0.05 +0.03 0.96 +0.02 0.19 +0.06
LEAP Oshot 0.75 +0.00 0.28 +0.00 0.87 +0.00 0.47 +0.00
ft 0.93 +0.00 0.07 +0.00 0.96 + 0.00 0.18 +0.00
DECAF (Ours) 0.95 +o0.01 0.03 +0.02 0.97 +0.01 0.15 +0.04
DMSVAE Oshot 0.66 +0.03 0.23 +0.01 0.81 +0.02 0.44 +0.01
ft 0.81 +0.03 0.09 + 0.00 0.90 +0.02 0.24 +0.02
DECAF (Ours) 0.73 +0.08 0.16 +0.10 0.85 +0.05 0.33 +o.15
iVAE Oshot 0.75 +0.00 0.28 +0.00 0.87 +0.00 0.47 +0.00
ft 0.87 +0.00 0.15 +0.01 0.93 +0.00 0.31 +0.01
DECAF (Ours)  0.95 +0.02 0.03 + 0.01 0.97 +0.01 0.14 +0.04

Table 5: Temporal Causal3dldent, CA—ROT (1K samples)
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Approach Adaptation R? diagt R?off-diag| Spearman diag? Spearman off-diag |

CITRISVAE  Oshot-1 0.99 +0.00 0.08 +0.00 1.00 + 0.00 0.16 +0.00
ft-1 0.95 +o0.01 0.06 + 0.01 0.98 +0.00 0.20 +0.03
Oshot-2 0.60 +0.04 0.29 +0.05 0.69 +0.05 0.39 £ 0.04
ft-2 0.79 £ 013 0.14 £ 0.10 0.87 £o0.11 0.27 o011
DECAF (Ours)  0.99 +0.00 0.00 -+ 0.01 1.00 + 0.00 0.03 +o0.01
LEAP Oshot-1 0.91 +0.00 0.08 =+ 0.00 0.95 +0.00 0.17 £+ 0.00
ft-1 0.93 +0.00 0.06 + 0.00 0.96 + 0.00 0.16 +0.00
Oshot-2 0.80 £0.13 0.15 +0.08 0.88 +0.08 0.30 +0.10
ft-2 0.84 +0.13 0.11 +0.09 0.88 +o0.11 0.22 +o0.11
DECAF (Ours)  0.90 +0.08 0.08 +0.10 0.92 +0.09 0.16 +o0.11
DMSVAE Oshot-1 0.97 +0.00 0.02 + 0.00 0.99 + 0.00 0.12 +0.00
ft-1 0.92 +o0.01 0.08 + 0.01 0.96 + 0.00 0.20 +0.02
Oshot-2 0.77 +0.05 0.17 +0.03 0.85 +0.05 0.33 £0.03
ft-2 0.78 +0.05 0.15 +0.03 0.87 +0.03 0.32 £ 0.03
DECAF (Ours)  0.98 + 0.00 0.02 -+ 0.00 0.99 +0.00 0.11 + 001
iVAE Oshot-1 0.79 +0.00 0.17 +0.00 0.87 +0.00 0.29 +0.00
ft-1 0.79 +0.00 0.15 +0.00 0.87 +0.00 0.30 +0.01
Oshot-2 0.74 +0.09 0.17 +0.04 0.84 +0.06 0.32 +0.05
ft-2 0.75 +0.09 0.16 +0.05 0.83 +0.07 0.30 +0.05
DECAF (Ours) 0.73 +0.08 0.04 +0.05 0.76 +o0.10 0.08 +0.08

Table 6: Voronoi Benchmark, REG-j+CH-i—REG-i (750 samples) with sources REG-j and CH-1i.

Approach Adaptation R? diag? R?off-diag| Spearman diag? Spearman off-diag |
CITRISVAE  Oshot-1 0.80 +0.01 0.22 +0.00 0.88 +0.00 0.31 £ 0.00
ft-1 0.92 +o0.01 0.03 +0.01 0.95 +0.01 0.13 £ 0.03
Oshot-2 0.81 +0.00 0.17 +0.00 0.82 +0.00 0.20 +0.00
ft-2 0.77 £ 0.01 0.10 +0.02 0.79 +0.02 0.18 +0.02
DECAF (Ours)  0.98 + 0.00 0.00 -+ 0.00 0.99 +0.00 0.03 +0.00
LEAP Oshot-1 0.60 + 0.01 0.42 +0.00 0.63 +0.00 0.49 +0.00
ft-1 0.60 + 0.01 0.40 + 0.00 0.63 +0.00 0.47 +0.01
Oshot-2 0.98 +0.00 0.02 +0.00 0.99 +0.00 0.08 +0.00
ft-2 1.00 + 0.00 0.00 + 0.00 1.00 + 0.00 0.04 + 0.01
DECAF (Ours) 0.76 +0.00 0.30 +0.00 0.78 +0.00 0.34 +0.00
DMSVAE Oshot-1 0.76 +0.00 0.21 +0.00 0.83 +0.00 0.34 +0.00
ft-1 0.79 +0.01 0.19 +0.01 0.83 +0.01 0.33 £ 0.02
Oshot-2 0.78 +0.00 0.13 +0.00 0.85 +0.00 0.28 +0.00
ft-2 0.76 +0.02 0.10 +0.03 0.80 +0.02 0.26 +0.03
DECAF (Ours)  0.80 + 0.00 0.13 +0.01 0.86 + 0.00 0.27 +0.01
iVAE Oshot-1 0.99 +0.00 0.01 +0.00 1.00 + 0.00 0.06 =+ 0.00
ft-1 0.98 +0.00 0.01 +o0.01 0.99 + 0.00 0.08 +0.02
Oshot-2 0.96 + 0.00 0.00 =+ 0.00 0.97 +0.00 0.05 +0.00
ft-2 0.98 +0.00 0.02 +0.01 0.99 + 0.00 0.10 £ 0.01
DECAF (Ours)  1.00 + 0.00 0.00 +0.00 1.00 +0.00 0.02 + 0.00

Table 7: InterventionalPong, CA-jPA+PO-PA—CA-PA (5K samples) with sources CA-jPA and
PO-PA.
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Approach Adaptation R? diag? R?off-diag] Spearmandiag? Spearman off-diag |

CITRISVAE Oshot-1 0.74 +0.06 0.25 +0.03 0.72 +0.05 0.28 +0.04
ft-1 0.75 +0.03 0.21 +0.02 0.71 +0.03 0.26 +0.02
Oshot-2 0.83 +0.01 0.09 +0.00 0.84 +0.02 0.21 +0.01
ft-2 0.80 +0.02 0.10 +0.01 0.78 +0.02 0.19 +0.02
DECAF (Ours) 0.88 +0.01 0.04 +0.01 0.88 -+ 0.01 0.12 +0.01
LEAP Oshot-1 0.75 +0.02 0.17 £ 0.02 0.74 +0.02 0.23 +0.01
ft-1 0.72 +0.01 0.15 +0.01 0.71 +0.02 0.22 +0.01
Oshot-2 0.76 +0.00 0.15 +0.01 0.78 + 0.00 0.27 +0.01
ft-2 0.74 +0.01 0.12 +0.01 0.75 +0.01 0.24 +0.01
DECAF (Ours)  0.78 +0.00 0.12 +0.01 0.78 + 0.00 0.21 +o0.01
DMSVAE Oshot-1 0.64 +0.02 0.25 +0.02 0.62 +0.02 0.29 +0.02
ft-1 0.61 +0.02 0.19 +0.01 0.60 + 0.01 0.27 +0.01
Oshot-2 0.67 +0.03 0.21 +0.04 0.66 +0.04 0.28 +0.01
ft-2 0.63 +0.03 0.19 +0.04 0.62 +0.04 0.27 +0.01
DECAF (Ours)  0.67 +0.03 0.21 +0.02 0.66 + 0.04 0.28 +0.02
iVAE Oshot-1 0.68 +0.02 0.24 +0.01 0.64 +0.02 0.24 +0.01
ft-1 0.64 +0.01 0.22 +0.00 0.62 + 0.01 0.26 +0.00
Oshot-2 0.72 +0.02 0.16 +0.02 0.73 +0.03 0.24 +o.01
ft-2 0.71 £ 0.02 0.14 +0.02 0.71 £ 0.02 0.26 +0.01
DECAF (Ours)  0.74 +0.02 0.15 +0.03 0.72 +0.03 0.20 +0.02

Table 8: Temporal Causal3DIdent, CA-jHUE+ROT-HUE—CA-HUE (1K samples) with sources
CA-jHUE and ROT-HUE.
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